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Abstract. For a fixed poset P , a family F of subsets of [n] is induced P -saturated if F does not

contain an induced copy of P , but for every subset S of [n] such that S ̸∈ F , then P is an induced

subposet of F ∪ {S}. The size of the smallest such family F is denoted by sat∗(n, P ). Keszegh,

Lemons, Martin, Pálvölgyi and Patkós [Journal of Combinatorial Theory Series A, 2021] proved that

there is a dichotomy of behaviour for this parameter: given any poset P , either sat∗(n, P ) = O(1)

or sat∗(n, P ) ⩾ log2 n. We improve this general result showing that either sat∗(n, P ) = O(1) or

sat∗(n, P ) ⩾ 2
√
n− 2. Our proof makes use of a Turán-type result for digraphs.

Curiously, it remains open as to whether our result is essentially best possible or not. On the one

hand, a conjecture of Ivan states that for the so-called diamond poset ♢ we have sat∗(n,♢) = Θ(
√
n);

so if true this conjecture implies our result is tight up to a multiplicative constant. On the other

hand, a conjecture of Keszegh, Lemons, Martin, Pálvölgyi and Patkós states that given any poset

P , either sat∗(n, P ) = O(1) or sat∗(n, P ) ⩾ n+ 1. We prove that this latter conjecture is true for

a certain class of posets P .

1. Introduction

Saturation problems have been well studied in graph theory. A graph G is H-saturated if it does

not contain a copy of the graph H, but adding any edge to G from its complement creates a copy

of H. Turán’s celebrated theorem [15] can be stated in the language of saturation: it determines

the maximum number of edges in a Kr-saturated n-vertex graph. In contrast, Erdős, Hajnal and

Moon [5] determined the minimum number of edges in a Kr-saturated n-vertex graph; see the

survey [3] for further results in this direction.

In recent years there has been an emphasis on developing the theory of saturation for posets.

Turán-type problems have been extensively studied in this setting (see, e.g., the survey [9]). In this

paper we are interested in minimum saturation questions à la Erdős–Hajnal–Moon. In particular,

we consider induced saturation problems.

All posets we consider will be (implicitly) viewed as finite collections of finite subsets of N. In

particular, we say that P is a poset on [p] := {1, 2, . . . , p} if P consists of subsets of [p]. Let P,Q

be posets. A poset homomorphism from P to Q is a function ϕ : P → Q such that for every

A,B ∈ P , if A ⊆ B then ϕ(A) ⊆ ϕ(B). We say that P is a subposet of Q if there is an injective

poset homomorphism from P to Q; otherwise, Q is said to be P -free. Further we say P is an

induced subposet of Q if there is an injective poset homomorphism ϕ from P to Q such that for

every A,B ∈ P , ϕ(A) ⊆ ϕ(B) if and only if A ⊆ B; otherwise, Q is said to be induced P -free.
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For a fixed poset P , we say that a family F ⊆ 2[n] of subsets of [n] is P -saturated if F is P -free,

but for every subset S of [n] such that S ̸∈ F , then P is a subposet of F ∪ {S}. A family F ⊆ 2[n]

of subsets of [n] is induced P -saturated if F is induced P -free, but for every subset S of [n] such

that S ̸∈ F , then P is an induced subposet of F ∪ {S}.
The study of minimum saturated posets was initiated by Gerbner, Keszegh, Lemons, Palmer,

Pálvölgyi and Patkós [8] in 2013. In their work the relevant parameter is sat(n, P ), which is defined

to be the size of the smallest P -saturated family of subsets of [n]. See, e.g., [8, 12, 14] for various

results on sat(n, P ).

The induced analogue of sat(n, P ) – denoted by sat∗(n, P ) – was first considered by Ferrara,

Kay, Kramer, Martin, Reiniger, Smith and Sullivan [6]. Thus, sat∗(n, P ) is defined to be the size

of the smallest induced P -saturated family of subsets of [n]. The following result from [12] (and

implicit in [6]) shows that the parameter sat∗(n, P ) has a dichotomy of behaviour.

Theorem 1.1. [6, 12] For any poset P , either there exists a constant KP with sat∗(n, P ) ⩽ KP or

sat∗(n, P ) ⩾ log2 n, for all n ∈ N.

Probably the most important open problem in the area is to obtain a tight version of Theorem 1.1;

that is, to replace the log2 n in Theorem 1.1 with a term that is as large as possible. In fact, Keszegh,

Lemons, Martin, Pálvölgyi and Patkós [12] made the following conjecture in this direction.

Conjecture 1.2. [12] For any poset P , either there exists a constant KP with sat∗(n, P ) ⩽ KP or

sat∗(n, P ) ⩾ n+ 1, for all n ∈ N.

Note that the lower bound of n+1 is rather natural here. For example, it is the size of the largest

chain in 2[n] as well as the smallest possible size of the union of two ‘layers’ in 2[n]. Furthermore, such

structures form minimum induced saturated families for the so-called fork poset ∨, i.e., sat∗(n,∨) =
n + 1 [6]; so the lower bound in Conjecture 1.2 cannot be increased. There are also no known

examples of posets P for which sat∗(n, P ) = ω(n).

In contrast, Ivan [11, Section 3] presented evidence that led her to conjecture a rather different

picture for the diamond poset ♢ (see Figure 1 for the Hasse diagram of ♢).

Conjecture 1.3. [11] sat∗(n,♢) = Θ(
√
n).

Our main result is the following improvement of Theorem 1.1.

Theorem 1.4. For any poset P , either there exists a constant KP with sat∗(n, P ) ⩽ KP or

sat∗(n,P) ⩾ 2
√
n− 2, for all n ∈ N.

Thus, if Conjecture 1.3 is true, the lower bound in Theorem 1.4 would be tight up to a multi-

plicative constant.

Figure 1. Hasse diagrams for the posets N , Y , ♢ and X.

On the other hand, we prove that Conjecture 1.2 does hold for a class of posets (that does not

include ♢). Given p ∈ N and a poset P on [p] we define the dual P of P as P := {[p] \F : F ∈ P}.
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We say a poset P has legs if there are distinct elements L1, L2, H ∈ P such that L1, L2 are

incomparable, L1, L2 ⊆ H and for any other element A ∈ P \ {L1, L2, H} we have A ⊇ H. The

elements L1 and L2 are called legs and H is called a hip.

Theorem 1.5. Let P be a poset with legs and n ⩾ 3. Then sat∗(n, P ) ⩾ n+1. Moreover, if both P

and P have legs, then sat∗(n, P ) ⩾ 2n+ 2.

Our results still leave both Conjecture 1.2 and Conjecture 1.3 open, and it is unclear to us which

of these conjectures is true. However, if Conjecture 1.3 is true we believe it highly likely that there

will be other posets P for which sat∗(n, P ) = Θ(
√
n).

It is also natural to seek exact results on sat∗(n, P ). However, despite there already being several

papers concerning sat∗(n, P ) [1, 4, 6, 10, 11, 12, 13], there are relatively few posets P for which

sat∗(n, P ) is known precisely (see Table 1 in [12] for a summary of most of the known results). Our

next result extends this limited pool of posets, determining sat∗(n,X) and sat∗(n, Y ) (see Figure 1

for the Hasse diagrams of X and Y ).

Theorem 1.6. Given any n ∈ N with n ⩾ 3,

(i ) sat∗(n, Y ) = n+ 2 and

(ii ) sat∗(n,X) = 2n+ 2.

Note that Theorem 1.6(ii ) easily follows via Theorem 1.5 and an extremal construction. An

application of Theorem 1.5 to Y only yields that sat∗(n, Y ) ⩾ n+1, so we require an extra idea to

obtain Theorem 1.6(i ).

It is natural to consider induced saturation problems for families of posets. Given a family of

posets P, we say that F ⊆ 2[n] is induced P-saturated if F contains no induced copy of any poset

P ∈ P and for every S ∈ 2[n] \F there exists an induced copy of some poset P ∈ P in F ∪{S}. We

denote the size of the smallest such family by sat∗(n,P). By following the proof of Theorem 1.4

precisely, one obtains the following result.

Theorem 1.7. For any family of posets P, either there exists a constant KP with sat∗(n,P) ⩽ KP
or sat∗(n,P) ⩾ 2

√
n− 2, for all n ∈ N.

In light of Theorem 1.7 it is natural to ask whether an analogue of Conjecture 1.2 is true in this

more general setting, or whether (for example) the lower bound on sat∗(n,P) in Theorem 1.7 is

best possible up to a multiplicative constant.

The proofs of Theorems 1.4–1.7 appear in [7]. In the next section we describe how we make use

of a Turán-type result for digraphs in the proof of Theorem 1.4.

2. A connection to a Turán problem for digraphs

In [13] a trick was introduced which can be used to prove lower bounds on sat∗(n, P ) for some

posets P . The idea is to construct a certain auxiliary digraph D whose vertex set consists of the

elements in an induced P -saturated family F ; one then argues that how this digraph is defined

forces D to contain many edges, which in turn forces a bound on the size of the vertex set of D

(i.e., lower bounds |F|). This trick has been used to prove that sat∗(n,♢) ⩾
√
n [13, Theorem 6]

and sat∗(n,N) ⩾
√
n [10, Proposition 4] (see Figure 1 for the Hasse diagram of N).

Our proof of Theorem 1.4 utilises a variant of this digraph trick. In particular, by introducing

an appropriate modification to the auxiliary digraph D used in [13], we are able to deduce certain
3



Turán-type properties of D. Turán problems in digraphs are classical in extremal combinatorics and

their study can be traced back to the work of Brown and Harary [2]. In [7] we prove a Turán-type

result concerning transitive cycles, stated as Theorem 2.1 below.

Given k ⩾ 3, the transitive cycle on k vertices
−⇀
TCk is a digraph with vertex set [k] and every

directed edge from i to i + 1 for every i ∈ [k − 1], as well as the directed edge from 1 to k. We

establish an upper bound on the number of edges of a digraph not containing any transitive cycle.

Theorem 2.1. Let n ∈ N and let D be a digraph on n vertices. If D is
−⇀
TCk-free for all k⩾3, then

e(D) ⩽

⌊
n2

4

⌋
+ 2.

Note that the bound in Theorem 2.1 is best possible up to an additive constant. Indeed, consider

the n-vertex digraph D with vertex classes A,B of size ⌊n/2⌋ and ⌈n/2⌉ respectively and all possible

directed edges from A to B. So D has
⌊
n2/4

⌋
edges and contains no transitive cycle.

Data availability statement. A full paper containing the proofs of our results can be found on

arXiv [7].
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